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1 Introduction

Teamwork is an engrained feature of the modern workplace1 and has increased in
complexity over time, as the nature of work has become more global, virtual, project
focused, and enmeshed in new technologies. Understanding how to manage teams for
optimal productivity in increasingly complex environments is essential for business man-
agers. A central question managers face in that regard is how to assign labor hours across
workers within teams, to maximize team productivity. If an increase in demand for the
firm’s product or service necessitates adding more worker hours, which team member(s)
should work more? In the reverse case of a negative demand shock, which team mem-
ber(s) should work less? What are the implications of these decisions for team productiv-
ity?

Daunting data demands have hampered academicians’ ability to provide much guid-
ance or insight into these issues, particularly for white-collar teams of knowledge work-
ers. Much of the existing empirical work on teams and productivity focuses on lower-
skilled teams. The dearth of empirical research on within-team labor allocation for knowl-
edge workers leaves unanswered, for example, the question of how important “stars” are
as drivers of team productivity. A wealth of anecdotal information suggests that stars
effectively carry their teams.2 That widely recognized idea is encapsulated in the Pareto
Principle of business management, which states that 80% of the work that a team accom-
plishes is completed by only 20% of the team’s membership.3 If a team has just a handful
of members, as many do, the Pareto Principle implies that often a single worker is re-
sponsible for most of the team’s output. Anecdotal evidence notwithstanding, the truth
or falsity of the Pareto Principle as it applies to teams of knowledge workers remains an
open empirical question.

This study empirically investigates the determinants of team productivity in construc-
tion project design teams, exploiting unique data on construction projects in a Japanese ar-
chitectural and engineering consultancy firm during the years 2004 to 2016.4 That times-

1Using a cross section that is representative of U.K. establishments in 1998, Table 6 of DeVaro (2006)
documents that the average (across establishments) proportion of the establishment’s largest occupational
group that works in formally designated teams is 0.77. That statistic remained relatively stable more than a
decade later, at 0.71, in the same U.K. survey that was repeated in 2011 in a cross section of 2680 establish-
ments.

2Business school professors who teach cases will be acutely aware of the phenomenon, whereby the
best student in a discussion group bears a disproportionate share of the workload and is the driving force
behind the group’s output.

3See, for example, Hamm (2010), and also https://betterexplained.com/articles/understanding-the-
pareto-principle-the-8020-rule/.

4Team production is important in Japan. Using a sample from a 2005 survey of firms (albeit one that
excludes the construction and business services industries), Kato and Owan (2011) document in their Table
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pan includes the Great Recession, from February 2008 to March of 2009, which affords a
source of plausibly exogenous variation in demand for the firm’s services (and in partic-
ular a reduction in the demand for the firm’s working hours). From the perspective of a
single firm, the economic crisis is an exogenous event that provides the hours variation
necessary to identify the productivity effect of within-team labor reallocation. Focus-
ing on a particular firm and industry holds constant the considerable heterogeneity that
would otherwise complicate the interpretation of results in a broader sample. Two factors
make this firm an attractive laboratory for studying how team productivity responds to
a recession-induced hours reduction. First, the construction industry is strongly sensitive
to the business cycle, which makes the recession a particularly effective treatment. Sec-
ond, Japan is famous for long working hours5 and for responding to shocks by adjusting
hours rather than workers,6 which implies considerable identifying variation in within-
team hours in response to the recession. We explain in section 6 why we expect our results
from a single Japanese firm to generalize to the U.S. and other economies.

We find that team productivity increased in this firm following the economic crisis.
The question is, why? We focus on two possible mechanisms that, ex ante, could po-
tentially be important. First, team members may become individually more productive
following the crisis. This could happen, for example, because shorter work schedules
may imbue workers with greater energy and focus per hour, and less exhaustion and

1 that the fraction of responding firms with self-managed teams or cross-functional teams is 0.62. While not
specific to Japan, there is also ample evidence that teams are important in the construction industry. For
example, the 2011 British WERS data reveal that for the subsample of 103 establishments in the construction
industry, the statistic defined in footnote 1 is 0.49. Team production in the construction industry has also
attracted considerable attention in the construction management literature (Yap et al. 2020). Pressman (2014)
describes the increasing importance of teams in the design of construction projects, which is driven by the
increasing complexity of projects and by the demands of the marketplace for lower costs and for faster
design and construction. In particular, he argues that three recent technologies (i.e., building information
modeling, integrated project delivery, and lean construction, which is a strategic methodology borrowed
and adapted from the automotive industry) are most effective when they are applied by high-functioning
collaborative teams to tackle complex projects.

5As noted in Yamamoto (2016), “The length of work hours in Japan stands out among industrialized na-
tions. According to the International Labour Organization (ILO) statistics and other sources, the percentage
of workers working long hours (defined as at least 49 hours per week) in recent years is about 10%-16% in
North America and Europe, but 22% in Japan.”

6For institutional reasons, Japan has a longstanding reputation for relying heavily on hours adjustments
– as opposed to layoffs and firings – in response to demand shocks, which is exactly what happened during
the Great Recession crisis. Japan’s Labor Contract Law prohibits “abuse of the right to dismiss”, which
basically means that a firm cannot lay off its workers unless it has made reasonable efforts to avoid doing
so. An implication is that the firm generally cannot lay off its workers when many workers are working long
hours, because in that case the court would order the firm to reduce working hours to standard working
hours before reducing its employment. The following newsletter contains a concise explanation of how
“abuse of the right to dismiss” is defined.

https://www.jurists.co.jp/sites/default/files/newsletter_pdf/newsletter_1701_labor_employment_law.pdf
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fatigue. Alternatively, fewer projects demanding each worker’s attention implies fewer
disruptions (Coviello et al., 2014). Second, the labor hours of workers with heteroge-
neous productivities may be reallocated within the team so that a greater fraction of the
team’s total hours are contributed by high-productivity workers than before the crisis.
The marginal productivity of an additional hour that is assigned to a team of a given
size depends on which team member is assigned that hour. As assigned hours increase
to meet demand for the firm’s output, the time constraints of the team’s most produc-
tive workers begin to bind, which requires the employer to assign further hours to less
productive team members.

Both of these mechanisms are amplified by complementarities in production, which
are present in most team settings, including ours. Complementarities arise from interde-
pendence among team members’ labor inputs and are one of the main reasons why em-
ployers organize production in teams. For example, suppose two team members work
closely together and regularly exchange pieces of useful information that enhance each
other’s productivity. Then an increase in individual worker productivity (for either or
both of them) that improves the quality of the information being exchanged will have
positive spillover effects on the productivity of the other worker. As another example,
suppose that the more productive worker on a two-person team experiences an exoge-
nous increase in their time endowment, perhaps because they just finished some other
job that was diverting their attention from the job at hand. As a consequence, this more
productive worker can spend more time helping and teaching the less productive worker
to avoid bottlenecks. This would result in an increase in team productivity. The size
of this increase, again, would depend on the return to helping activities or knowledge
spillovers within the team.

After describing the data and production setting in section 2, section 3 presents de-
scriptive empirical evidence of three types. First, consistent with the Pareto Principle
of business management, we show that within-team labor allocation tends to be highly
concentrated, with a small number of team members contributing the bulk of the hours.
A higher within-team concentration of hours is also found to be associated with higher
team productivity. Second, we document that the downward adjustment in the labor
input during the crisis occurred more for working hours than for employment and that
average team productivity increased by nearly 7.5% after the crisis. Third, we present
descriptive evidence suggesting that both of the aforementioned mechanisms (i.e., indi-
vidual productivity and within-team labor reallocation) may contribute to explaining the
post-crisis increase in team productivity.

In section 4, we present a theoretical model that explains within-team allocation of la-
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bor hours. The model’s workers, who differ in their productivities and time endowments,
are assigned working hours based on their absolute advantages in production, and they
are assigned to tasks based on their capacities (i.e., time endowments). The most produc-
tive workers are assigned hours first. When product demand overwhelms those workers’
capacities, additional hours are assigned to less productive workers, which decreases av-
erage team productivity. We then compute a “pre-crisis” and a “post-crisis” calibration
of the model’s parameters with data and use it in section 5 to simulate outcomes in both
regimes.

Subsequent analyses reveal that the model simulation replicates the empirical patterns
observed very well. The calibrated model generates an average team-level productivity
increase of 7.6% after the crisis, which is statistically indistinguishable from that found
in the real data. The calibration allows us to decompose the total productivity effect
into parts due to increased worker-level productivity and within-team labor reallocation.
We find that the channel of worker-level productivity increases explains 2.4 percentage
points, or 31.6%, of the team-level productivity increase, while labor reallocation explains
the remaining 5.2 percentage points, or 68.4%. Therefore, the results suggest that labor
reallocation plays an important role in explaining team-level productivity changes. Ad-
ditionally, the calibrated model successfully generates several patterns that are quanti-
tatively similar to those found in the data, including: (1) the fraction of the team’s time
accounted for by the team’s top hours contributor increases, and team size decreases, af-
ter the crisis; (2) the within-team concentration of working hours is positively correlated
with team productivity; (3) the joint distribution of output size and the fraction of work-
ing hours from the team’s top hours contributor is generated from the model-simulated
data despite not being explicitly targeted.

Our study contributes by providing new evidence outside of the oft-studied (in the
teams literature) manufacturing sector, in particular from the knowledge-intensive, white-
collar professional jobs where teamwork is becoming the norm--design, R&D, consulting,
accounting, auditing, academic research, etc. Within-team heterogeneity in hours arises
in such settings because team members can work in different places, at different times,
and for different durations.7 Economists have been unable to study productivity in such
occupations given their idiosyncratic outputs. Our setting and unique data facilitate pro-
ductivity measurement and analysis because the production process is sufficiently stan-
dardized that the total labor required to complete each job is predictable. Moreover, the

7In contrast, manufacturing jobs often require workers to be physically and temporally proximate. On an
assembly line, for example, complementarities are achieved only when the team members are physically
present at the same time, so within-team heterogeneity in working hours (regardless of heterogeneity in
abilities) is limited or nonexistent.
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value of the output is fixed on each project before teamwork commences. Consequently,
productivity depends only on total inputs.

Our focus on within-team heterogeneity in working hours is new. The theoretical
model highlights that heterogeneity in hours is a consequence of heterogeneity in team
members’ individual productivities, where the employer assigns the most productive
workers to tasks first, followed by the less productive ones. Although team composition
is endogenous in our model, the available talent pool of candidates is randomly drawn,
which implies significant variation in the distribution of available skill levels. This team
formation process in the model creates a negative correlation between heterogeneity and
productivity because less productive teams tend to add more workers from the lower part
of skill distribution and more heterogeneous teams in terms of skill level tend to be less
productive due to complementarities. Both the actual data and those simulated from the
calibrated model exhibit a similar pattern, i.e., team heterogeneity in skills and team size
are negatively correlated with productivity.

There is a related literature on team diversity and productivity. Although many di-
mensions of heterogeneity have been explored, our study investigates the implications
for team productivity of worker heterogeneity in productivity and, consequently, in as-
signed working hours. There are theoretical rationales for both positive and negative
team-level productivity effects.8 Hamilton et al. (2012) discuss gains from task coordina-
tion and peer learning. Productivity improves when workers’ skill levels and task diffi-
culties are optimally matched or when more experienced workers share their knowledge
with less experienced ones. On the other hand, when worker heterogeneity makes it diffi-
cult to form the team norm or standard, which can be interpreted as the team equilibrium
a la Che and Yoo (2001), worker heterogeneity could harm team productivity. When team
members are peers who compete with each other for advancement within the organiza-
tion, additional implications are derived. Classic tournament theory (Lazear and Rosen
1981) predicts that heterogeneity in ability depresses incentives, which would hurt team
performance.9 In contrast, the market-based tournament model of Gürtler and Gürtler

8There are also theoretical rationales for both positive and negative team-level productivity effects on
dimensions of heterogeneity other than individual productivity (e.g., various demographic characteristics).
The positive view is that diversity broadens the set of perspectives and approaches that team members
bring to the table, which fosters creativity, scope for complementarities, and ultimately high group per-
formance. The negative view, which is supported by the preponderance of the evidence (Mannix and
Neale 2005), is that diversity induces communication challenges and social divisions that hurt group per-
formance. See Lazear (1999) for discussions supporting the positive view and Lang (1986) and Kandel and
Lazear (1992) for discussions on the negative view.

9The reason is that the high-ability workers need not exert much effort because they are likely to win
regardless, and the low-ability workers do not exert much effort because their chances of winning are low
regardless.
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(2015) shows that the opposite prediction can arise.10 Empirical evidence favors a posi-
tive effect of heterogeneity in ability on team performance. 11

2 Production setting, data, and measures

The data come from a large Japanese architectural and engineering consultancy firm and
include personnel records (from 2011 to 2016) and project management data (from fis-
cal years 2004 to 2016). The analysis is also informed by in-person interviews that we
conducted with seven of the firm’s managers and by other less formal communication
with the firm’s human resource managers.12 The personnel records cover all employees,
including dispatched or contract workers who may be included in the project manage-
ment data, and include salary and hierarchical ranks that are classified into three levels
(manager, senior architect, and junior architect).

Projects consist of multiple phases, called jobs. The job is the unit of observation.13

Contracts are negotiated separately for each job in a project, with contract terms set before
the job begins. Each job is performed in a team of varying size depending on the phase,
type of the building, floor space, etc. Teams have an average size of 14 and are assigned
to a chief manager who is the person fully responsible for the job and who bears a penalty
in the event of quality problems. The chief manager’s responsibilities include selecting
one team leader, usually a senior architect, to lead daily operations and staffing junior
architects who execute tasks (e.g., drawing pictures after the details of the design are
confirmed).

The sequence of jobs in a particular architectural project might be as follows: initial
planning, schematic design, design development, construction documentation, and su-
pervision of the construction process. In the initial stages, the architects work with the
client to discuss the requirements of the building, including the size and the shape. Af-
ter the basic design is settled, the project team interacts with the client concerning the
project’s details. For example, the materials for interior finishes must be selected. A large
part of the architectural work is construction documentation, where architects produce

10The idea is that winning a promotion against a competitive pool characterized by a wide range of
talent causes competing employers in the labor market to update their beliefs about the winner’s ability to
a greater extent than if the worker had prevailed over a level playing field. Workers anticipate large prizes
from promotion due to this larger updating, which creates a strong incentive to exert effort to try to win the
prize. See also Deutscher et al. (2020).

11See Hamilton et al. (2003, 2012),Franck and Nüesch (2010), Parrotta et al. (2014), Chan et al. (2014) and
Garnero et al. (2014).

12The seven managers were selected on the basis of the manager effects estimated in Shangguan and
Owan (2019), which also contains further details about the data.

13Usage of the word “job” here differs from that in either the personnel economics literature or the forth-
coming theoretical model. In the context of the data, a job is a phase of a longer-term project.
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drawing sets that contain all the details for approval and construction purposes. Finally,
the architects work with both clients and contractors at the supervision stage, to ensure
that the construction aligns with the design, making design changes when necessary.

The data include two kinds of jobs. External jobs are profit-center jobs that generate
revenue. Internal jobs are cost-center jobs that mainly entail administrative responsibili-
ties. Revenue and costs (both labor and non-labor) are observed for each job. Finer com-
ponents of nonlabor costs are also observed, including material/traveling costs and three
types of outsourcing costs. The project management data also include information on
the client’s identity and industry, type and size of the building being designed, location
where the work is conducted, phase of work, contractor selection method, etc.

Information about the entire industry comes from the Current Survey on Orders Re-
ceived for Construction, conducted by the Ministry of Land, Infrastructure, Transport and
Tourism (MLIT). For each ordering industry and each type of construction, the survey
reports the annual amount of total orders received by the 50 largest construction compa-
nies. The survey has been reported monthly since 1959, and the total construction orders
is used as a leading indicator of industrial demand by the Japanese government and think
tanks. We aggregate the survey data at the ordering industry level and then link to the
data described above as the industry information recorded for each job.

The following definitions of empirical measures index workers and jobs by i and j.
Time periods, which are comprised of multiple years, are indexed by t. Specifically, let
t − 1 denote the period before the financial crisis (i.e., years 2005, 2006, and 2007), and
let t denote the post-crisis period (i.e., years 2010, 2011, and 2012). We drop the years
2008-2009 from our empirical models due to the difficulty of exactly timing the shock.
Let A f terCrisisj denote a dummy equaling 1 if the starting year for job j occurred in the
post-crisis period and 0 otherwise.

2.1 Team productivity

Revenue for job j, Revj, is the main output measure. Given that working hours are also
observed, a natural measure of team productivity is the ratio of Revj and total working
hours on job j. However, typically some of the work is outsourced to third parties, whose
working hours are unobserved in the data. To render the input and output measures com-
patible, Revj is adjusted using job j’s outsourcing costs. Outsourcing costs mostly include
the routine tasks that are more efficiently done by a subcontractor and the highly special-
ized tasks that cannot be completed within the firm (e.g., special inspections that require a
specialized license). Let Oj be the outsource ratio for job j, which is calculated as the ratio
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of outsource costs, OutsourceCostj, and job-level total costs, Costj. “Adjusted revenue”

for job j is then defined as AdjRevj = Revj
(
1 − Oj

)
= Revj −

Revj
Costj

OutsourceCostj.
The job-level team productivity measure that serves as the main dependent variable

is ln
AdjRevj

hj
, or the natural logarithm of the ratio of adjusted revenue to total working

hours, hj, which are defined in the next subsection. Figure 1 shows its distribution for the
estimation sample. There is substantial productivity variation across this firm’s teams.
The standard deviation of ln

AdjRevj
hj

is about 0.76, implying that a team whose efficiency
exceeds the mean by one standard deviation can produce more than 1.5 times the revenue
of a team whose efficiency lies one standard deviation below the mean. Figure 1 also
plots the density function of a normal random variable with the same mean and standard
deviation as in the histogram. The normal distribution approximates the data reasonably
well.

The output measure can also be understood by comparing it to the traditional value-
added measure. As depreciation is negligible in the current firm, the value added mea-
sure for each job can be defined as the sum of job-level profit and labor costs (or, equiv-
alently, Revj minus nonlabor costs). As outsourcing costs are the major part of nonlabor
costs, adjusted revenue is expected to relate closely to value added. This is verified in Fig-
ure 2, where the adjusted revenue for each job is plotted on the horizontal axis, and the
value added for each job is plotted on the vertical axis. Compared with the value-added
measure, an advantage of the adjusted revenue measure is that it ensures that output is
positive. This yields a more intuitive interpretation and ensures that its natural logarithm
is defined for every job. As discussed in Syverson (2011), using revenue is the litera-
ture’s standard approach to measuring output, though it has limitations.14 We return to
this issue at the end of section section 3.2 when addressing the possibility that revenue
incorporates price changes that may obscure productivity changes.

2.2 Working hours and other variables

The presumption in this study (as made explicit in the forthcoming model) is that team
members’ working hours are assigned by the employer, specifically by the chief manager,
rather than chosen by the worker.15 In alternative production settings, the reverse might

14One concern is that revenue might reflect changes in product mix. Another is that price variation might
reflect differences in market power across producers. In the latter case, revenue may be more reflective of
the state of the local output market than of true productive efficiency. See section 2.2. of (Syverson, 2011)
for a more detailed discussion.

15The chief manager is supervised by the executive committee, but the committee only influences the
decision of assigning jobs to chief managers. Chief managers are often assigned to several jobs that they
manage simultaneously, and they can decide how much of their attention to devote to each.
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be true. Ambiguity concerning which assumption is correct in general is highlighted in
Pencavel (2016). This problem of ambiguity is avoided in the present context with single-
firm personnel data, in which our interviews with the firm’s manager’s revealed that
hours are assigned to workers by the chief manager.

The managers allocate tasks across workers and plan and monitor how many hours
are spent on each task to control labor costs. They are expected to provide advice and
support when there is a delay in progress.16 They also conduct regular internal meetings
to communicate about the status of each worker on each project, so as to make better
subsequent labor allocation decisions. The data on working hours are available at the
worker-job-month level. They are from the project management data and reported by the
workers for internal accounting purposes.17 As referenced in section section 2.1 in the
productivity measure’s denominator, hj denotes total working hours on job j. We denote
by hkj the total working hours of the worker who ranks kth in terms of total hours within
the team. For example, h1j denotes the working hours of job j’s rank-1 worker.

Similarly, we use lkj to denote the fraction of hours contributed by the rank-k worker.
We also use an alternative measure, lq

j , which represents the qth percentile of the distribu-
tion of hours fractions. For example, for the case of q = 90, we define l90

j via the following
steps. We first rank team j’s members in order (from lowest to highest) by their hours
contributions to the team, with the lowest hours attributed to the 0th percentile, and the
highest hours attributed to the 100th percentile. Using a simple linear interpolation rule,
we then calculate l90

j as a weighted average of the hours fractions of the two workers who
straddle the 90th percentile.18

16The fact that hours are closely monitored by chief managers in this setting eliminates an identification
problem that plagues the literature on working hours, i.e., do observed hours reflect workers’ preferences
or employers’ preferences? As discussed in Pencavel (2016) that identification question received attention
in the 1960s and 1970s (e.g., Feldstein 1968, Rosen 1969, Abbott and Ashenfelter 1976) but was then largely
forgotten for more than four decades as the empirical literature became dominated by labor supply models
that implicitly resolved the preceding question in favor of workers’ preferences. The present study’s op-
erating assumption of employer-determined hours is appropriate in light of our interviews with the firm’s
managers.

17One might wonder whether workers have an incentive to overreport or underreport their hours. Total
hours are unlikely to be misreported because excessive hours, which can be electronically double checked,
are closely monitored by the management for cost control and health management purposes. Workers,
however, might re-allocate their hours among the jobs on which they work. If a job incurs too many costs,
workers might re-allocate their hours to another high-margin job, so as to please their bosses. The manage-
ment, however, strongly discourages such behavior.

18Suppose the team has n workers. If the 90th percentile falls between the rank-i and rank-(i + 1) workers,
i.e., nj − (i + 1) ≤ 0.9(nj − 1) ≤ nj − i, the 90th percentile is calculated as the weighted average of the hours
shares of the rank-i and rank-(i + 1) workers, with the weight for the rank-i worker being nj − i − 0.9(nj −
1) = 0.1nj + 0.9 − i. By this definition, 90 percent of the interval

[
1, nj

]
lies to the left of l90

j . This is the

standard interpolation rule as shown in method 7 of Hyndman and Fan (1996). When 2 ≤ nj ≤ 10, the 90th

percentile is the weighted average of the hours shares of the rank-1 and rank-2 workers.
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Let TeamSizej denote the number of workers engaged in teamwork on job j. It is
calculated as the number of unique worker identifiers over the whole production period.
In our analysis sample, half the teams have fewer than 10 workers, and fewer than 10
percent have more than 14 workers. The number of team members who continuously
work together is about 5, which is calculated as the average number of workers across
months. The distribution of team size appears in the top row of Table 1. Let JobContentj

denote a categorical variable (with 22 categories) that we use to control for the type of
service in each job j.19 Let Indj denote a vector of 39 dummies indicating the client’s
industry.20 Let AveAgeSt1j denote the average age of the rank-1 worker in the starting
year of job j.

2.3 Sample selection and summary statistics

Given our use of a revenue-based productivity measure, we focus on external jobs, which
are the revenue-generating profit-center jobs. We only include jobs with revenue of at
least one million Japanese yen. Since that revenue threshold is rather low across jobs,
this restriction essentially excludes failed jobs that do not generate any revenue. Jobs for
which the floor area is zero are excluded. These tend to be consulting jobs that differ in
nature from design jobs.

The distribution of the outsourcing ratio over all jobs displays two spikes. The first
occurs at zero, i.e., many jobs use no outsourcing. The second occurs near one, where
the fraction Oj is at or very near one. We restrict the analysis to the sample of jobs with
Oj ≤ 0.8, though using alternative cutoffs yields similar results.

A typical job extends beyond one year, and a large job could last three years. We
require jobs to be completed. Although the data cover the period from 2004 to 2016, only
jobs that started from 2004 to 2013 are included, to avoid right censoring. The excluded
jobs that started before 2004 are expected to be longer jobs. The desirability of dropping
observations beyond 2013 is clear from Figure 3, which plots the average duration of jobs
by their starting years. A sharp drop is observed in 2014, due to right censoring.

Table 2 reports summary statistics for all variables used in the analysis.

19The top 10 categories of JobContentj cover 96.1% of the number of jobs and 98.4% of revenue in the
sample. In decreasing order of revenue, they are: construction documentation (32.6%), design/construction
supervision (27.2%), construction supervision (17.0%), design development (13.3%), other (3.3%), schematic
design (2.2%), planning & development management (0.9%), other planning (0.8%), construction supervi-
sion consulting (0.6%), design/construction supervision consulting (0.5%).

20The top 10 client industries cover 65.4% of the number of jobs and 70.6% of the revenue in the sam-
ple. They are: Real-estate (21.1%), Education (10.3%), Financial/insurance (9.1%), Transportation (6.2%),
Other public interest organizations (5.2%), Municipal government (4.1%), Electronics (4.0%), Others (3.6%),
Medical related organizations (3.5%), and Service industry (3.4%).
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3 Empirical evidence on teams and productivity

This section documents empirical evidence concerning teams and productivity. Section
3.1 provides evidence on within-team labor allocation and the determinants of team pro-
ductivity. Consistent with the Pareto Principle of business management, within-team
labor allocation is revealed to be heavily concentrated, with a small number of workers
accounting for the bulk of the team’s hours. Higher concentration is also found to be as-
sociated with higher team productivity. Section 3.2 documents the post-crisis increase in
team productivity that we seek to explain. Section 3.3 provides evidence suggesting pos-
sible channels of influence for the post-crisis productivity increase. Following the crisis,
on average, each worker is assigned fewer working hours and participates in fewer jobs,
while teams shrink in size and concentrate their total hours more heavily on the team’s
top workers.

3.1 Within-team labor allocation and the determinants of team produc-

tivity

Consistent with the Pareto Principle of business management, our data reveal that within-
team working hours are highly concentrated, with a small number of team members con-
tributing the bulk of the hours. Table 1 illustrates the within-team allocation of working
hours. The topmost row gives the size distribution of teams (e.g., 4-person teams rep-
resent 7.6 percent of the sample). The rows are listed in descending order by the team
members’ hours contributions, with the highest-ranked worker (i.e., the one who con-
tributes the most hours, who we henceforth refer to as the rank-1 worker) listed first.21 A
striking concentration of within-team labor allocation is revealed. In a 6-person team, the
top team member contributes more hours than the 5 others combined. Although the top
worker’s contribution share of the team’s total hours naturally decreases with team size,
it remains substantial even in teams as large as 20.22

Figure 4 plots the empirical distribution of the fraction of hours contributed by the
rank-1 worker. On average, that worker contributes 47 percent of the team’s total hours.
The distribution exhibits two spikes. One, on the right, corresponds to single-worker
teams. The other occurs at about 0.3 and shows that even when excluding single-worker
teams, the rank-1 worker often contributes about 30 percent of total hours. Figure 5 plots

21For example, in the fourth column, over 64 percent of a 4-person team’s hours are contributed by the
rank-1 worker, whereas 25 percent are contributed by the rank-2 worker. The rank-3 and rank-4 workers
contribute only around 9 percent and 1 percent of total working hours, respectively.

22Jobs with team size no greater than 20 comprise 76% of our sample.
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the relationship between output size, as measured by ln AdjRevj, and the fraction of hours
contributed by the rank-1 worker. That fraction exhibits substantial variation conditional
on output size. The fraction naturally decreases as output size grows, though it remains
substantial even for large jobs. Thus, regardless of the size of the job, the rank-1 worker
contributes a substantial share of the team’s total hours.

We now investigate the extent to which the substantial variation in team productivity
that is documented in Figure 1 can be explained by the fraction of hours contributed by
the rank-1 worker. Table 4 reports the results from a regression of team productivity on
the fraction of the team’s hours contributed by the rank-1 worker. The regression shows
that the fraction has strong explanatory power; the relationship is significant both statis-
tically and economically. A 10 percentage point increase in the fraction is associated with
roughly a 5% increase in team productivity.23 This relationship suggests the relevance of
within-team labor allocation for understanding team productivity.

3.2 Productivity changes surrounding the crisis

Changes in industry demand are shown in Figure 6, which graphs the total orders re-
ceived annually, in trillions of Japanese yen, as measured by the MLIT survey. Total de-
mand decreased starting in 2008 and did not recover to its pre-crisis level until after 2013.
Overall economic conditions, as measured by gross domestic product (GDP), show a sim-
ilar pattern. According to the World Bank, Japan’s GDP in 2010 U.S. dollars decreased
from 5.848 trillion in 2007 to 5.471 trillion in 2009 and did not recover to its pre-crisis level
until 2013.

The firm experienced a similar drop in demand, as shown in Figure 7. The total rev-
enue from jobs that start in each year suddenly plummeted in 2008 and did not recover
to its 2007 level even by 2013. Similarly, Figure 8 shows that the total number of jobs that
started in each year decreases from 2007 to 2009 and by 2013 remains lower than its 2007
level.

Figure 9 plots the average adjusted revenue per hour – the natural logarithm of which
serves as our dependent variable describing team productivity – for jobs that were started
in the year indicated on the horizontal axis and completed by the end of the sample pe-
riod (i.e., 2016). The plot reveals a trend that decreases until 2008 and then increases until
2012. Retirement and switching to minor roles before retirement of a few highly produc-
tive workers from the baby boomer cohort may partly explain the decline in individual

23With the estimated coefficient of 0.526, an increase of 0.1 in ln l1j is associated with an increase in team
productivity of about 0.053. The estimated coefficient is even larger when controlling for output size.
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productivity.24 To show evidence for this conjecture, in Figure 10,we plot the average
age of rank-1 workers across all jobs that start in each year, normalizing year 2008 to be
equal to 1.25 The average age of the rank-1 worker exhibits a clear decreasing trend that
coincides with the pre-crisis trend in team productivity. These patterns suggest the de-
sirability of purging team productivity of age effects, which we do using the following
regression model:

ln
AdjRevj

hj
= β0 + β1AveAgeSt1j + β2AveAgeSt2

1j + ϕInd
j + ϕJC

j + εj. (1)

In this regression, ϕInd
j denotes client industry fixed effects, and ϕJC

j denotes job content
fixed effects. Controlling for client industry and job type in the preceding regression
addresses job heterogeneity. The residuals are regressed on starting year fixed effects.
The estimates are plotted in Figure 11, which reveals that the decreasing pre-trend in
team productivity disappears, whereas team productivity increases following the crisis.

Table 3 reports the magnitude of the productivity change resulting from the crisis.
Column 1 reports the estimate of a simple regression of ln

AdjRevj
hj

on A f terCrisisj with no

controls. The estimated value of ∆Ât in column 1 is 7.5 percent. This estimate may be
biased as a productivity effect of the crisis because the project composition in terms of
client industry and job content may change after the crisis. To estimate the conditional
productivity change resulting from the crisis, we replace the starting year dummies with
the A f terCrisisj dummy in the preceding regression. Thus, the productivity change re-
sulting from the crisis, conditional on job characteristics, is measured by δ in the following
regression:

ln
AdjRevj

hj
= β0 + δA f terCrisisj + ϕInd

j + ϕJC
j + εj, (2)

The estimated δ when the regression includes fixed effects for industry and job content
is reported as ∆Ât in column 2 of Table 3, i.e., 6.6 percent. The small and statistically
insignificant decrease in the estimated δ between columns 1 and 2 shows that productivity
improvement within job categories (rather than a change in the composition of jobs) is

24The baby boomers who were born in 1947-49 retired between 2007 and 2009.
25More specifically, we estimate a regression of the natural logarithm of the rank-1 worker’s age on start-

ing year, industry, and job content fixed effects. We then plot the value of the starting year fixed effect after
taking an exponential transformation. The absence of personnel data prior to 2011 means that we do not
have valid age data for workers who leave the firm before 2011. Given that the turnover rate is low in
this firm and many workers remain there for their careers, we impute the missing ages by assuming that
workers who disappear before 2011 do so because they retired at the standard retirement age of 60.
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driving the team productivity increase.26 This estimate increases to 11.5 percent when the
quadratic of the average of the rank-1 worker ages is added to the regression, as reported
in column 3. This increase in the estimated δ reveals that because the rank-1 workers
are on average less experienced after the crisis, to the extent that more experienced rank-
1 workers induce higher team productivity, we should attribute a higher productivity
enhancing effect to the crisis.

A potential concern with any revenue-based productivity measure is the possibility
that revenue incorporates price changes that may obscure productivity changes. This is
a well-known and widespread problem in productivity analysis, as discussed in Syver-
son (2011). In our case, the markup, i.e., the spread between the selling price and the
production cost, likely decreased in response to the crisis-induced drop in demand. That
decrease may at least partly explain why revenue per hour decreased in 2008, when the
shock of the crisis had the largest impact. Following the same logic, the post-crisis in-
crease in revenue per hour may at least partly reflect a recovering markup instead of an
improving production technology.

To assess the role of the markup, Figure 12 plots average adjusted revenue per job for
jobs that were started in the year indicated on the horizontal axis and completed by the
end of the sample. If the change in the markup is the major force that drives productivity,
then the average adjusted revenue per job should decrease during the crisis and increase
after the crisis. Figure 12 reveals the opposite pattern, suggesting that the productivity
increase is not driven by a changing markup.27 Although this finding that the price is
insensitive to a shift in demand might appear surprising, note that projects often last for
many years, and this firm had sufficient backlogs of orders to survive the recession. Thus,
the firm did not need to cut prices to attract business.

To further investigate the potential role of price changes, we obtained three relevant
industrial price indexes from the Bank of Japan and used them to control for price in the

26If the pre-crisis and post-crisis definitions are both shortened by a year (i.e., 2006-2007 instead of 2005-
2007, and 2010-2011 instead of 2010-2012), column 1 of Table 3 changes to ∆Ât = 10.2 percent with standard
error 0.028, column 2 changes to ∆Ât = 8.0 percent with standard error 0.028, and column 3 changes to ∆Ât
= 5.1 percent with standard error 0.039. If both periods are lengthened by a year (i.e., 2004-2007 instead of
2005-2007, and 2010-2013 instead of 2010-2012), column 1 changes to ∆At = 4.7 percent with standard error
0.021, column 2 changes to ∆Ât = 3.3 percent with standard error 0.020, and column 3 changes to ∆Ât =
11.3 percent with standard error 0.032. The tradeoff is that shorter bandwidths for time periods reduce the
sample size, whereas longer ones increase the risk that events unrelated to the crisis may cloud the picture.

27A regression analysis that controls for industry and job content dummies shows that while there is an
increase of adjusted revenue per job when comparing the pre-crisis period (2005 to 2007) with the crisis
period (2008 to 2009), there is no evidence of significant changes between the crisis period and the post-
crisis period (2010 to 2012). Given that the regression controls for detailed job characteristics, the difference
in the timing of changes further confirms that a changing markup is unlikely to drive the productivity
change.
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preceding regression model. These indexes are for three separate services: architectural
design, civil engineering design, and civil engineering service.28 The augmented regres-
sion yields a considerably larger post-crisis increase in team productivity (i.e., about a 14.6
percent increase in team productivity with a standard error of 0.047) than we document
in our main result, which can therefore be considered conservative.

Identification in the preceding regression comes from temporal variation (i.e., the dif-
ference before and after the crisis); there is no control group. Given the nearly universal
reach of this crisis (particularly in a highly cyclical industry like construction) it is un-
clear that a valid control group could be defined. Nonetheless, temporal variation alone
is still interesting in this case because of the magnitude, nature, and abrupt onset of the
crisis. We believe that a single firm’s experience in response to this plausibly exogenous
major shock is informative, particularly in a highly cyclical industry like construction in
which effects of a major downturn are definitely expected. All our evidence points to an
abrupt regime change being triggered by the crisis. Moreover, the theoretical model that
we calibrate to provide further evidence from simulations adds credence to our results.

3.3 Channels of influence for post-crisis increase in team productivity

We next present evidence suggesting two potential channels of influence for the post-
crisis increase in team productivity documented in section 3.2. The first channel increases
team productivity through an increase in individual worker productivity, and the second
does so via allocating more tasks to more productive workers. Figure 13 reveals that
the average monthly working hours (of workers) declined by about 20 hours in 2009,
which was likely driven by a sudden drop in demand. The variable does not return to its
pre-crisis level even when total revenue recovers in 2013. The decline in working hours
is likely to improve the worker’s productivity because of less fatigue and more energy.
Moreover, Figure 14 plots the average (across workers for each month) number of jobs on
which a worker spends a positive amount of time, along with the annual average across
all months in each year (which is shown as a solid line). The variable decreases around
2007 to 2010 and never rebounds to its 2006 level. 29 The reduction in the number of

28To elaborate, we computed the average of these three indexes, omitting the year 2004 because the civil
engineering design index was unavailable for that year. The resulting average price index was included as
a control variable in a regression of team productivity that includes A f terCrisis as the independent variable
and that incorporates industry and job content fixed effects.

29The main reason for the decrease is that the total number of jobs dropped as demand began softening
in 2008 when the crisis hit, as cash strapped potential clients delayed pursuing their intended construction
projects. According to the national construction statistics, total orders declined by almost 30 percent from
the peak in 2008 to the trough in 2010. This overall weakness of the market might have been partially offset
by several big urban redevelopment projects that started in mid-2000 for this major architectural design
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jobs per worker is supportive of the first channel. Specifically, when the number of jobs
declines following the crisis (as documented in Figure 14) the attention of the team’s top
worker is less likely to be diverted by other jobs, so team productivity should increase.
Support for that channel can be found in the work of Coviello et al. (2014, 2015) which
shows that multi-tasking leads to task juggling that reduces a worker’s productivity.

The preceding facts are interesting when combined with the evidence in section 3.1,
which reveals the high within-team concentration of hours and that a team’s greatest con-
tributor of hours makes a substantial contribution to team productivity. Thus, the second
channel of labor reallocation can also potentially contribute to the post-crisis increase in
team productivity. Further evidence is suggested in the first two rows of Table 5, which
reports estimation results from regressions of the form:

Outcomej = β0 + β1A f terCrisisj + β2 ln AdjRevj + ϕInd
j + ϕJC

j + εj, (3)

where the first two measures of Outcomej are ln TeamSizej and l90
j , i.e., the 90th sample

percentile of the within-team hours fraction, as defined in section 2.2. The first row of
Table 5 shows that team size decreases after the crisis. The second row shows that l90

j
increases after the crisis. Both patterns are consistent with labor reallocation contributing
to the increase in team productivity.

The third row of Table 5 reports estimation results when the dependent variable in the
preceding regression is ln h1j, i.e., the natural logarithm of the working hours of team j’s
rank-1 worker. That worker’s hours decreased after the crisis, which suggests a worker-
level increase in efficiency (perhaps because the decline in the number of jobs, as shown in
Figure 14, allowed workers to better focus their attention with fewer distractions). Unre-
ported regression estimates also reveal decreases in working hours for the team’s workers
ranked 2 through 5.

Both channels of influence are amplified to the extent that complementarities exist
between the hours of different team members. Our discussions with the firm’s managers
lead us to expect that nontrivial complementarities exist in this setting. For example,
some workers need to work out the space design, others need to put on the electricity
system, and still others need to design the air conditioning system, etc. Integrating all of
these parts can be accomplished more efficiently when the different team members’ hours
significantly overlap.

In sum, the evidence suggests that post-crisis team productivity increased via two dis-
tinct channels: an increase in the productivities of individual team members and within-

company.
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team labor reallocation. Both channels are amplified to the extent that complementarities
exist, as we believe they do, among the different team members’ hours. Although the
preceding reduced form models provide evidence consistent with both channels of influ-
ence, their relative magnitudes cannot be quantified. In the next two sections, we further
analyze the two channels of influence with the aid of a theoretical model that rational-
izes all the patterns presented above and permits a quantitative analysis of their relative
importance.

4 A theoretical model of labor assignment within teams

The theoretical model has two purposes. The first is to provide an interpretation of the
empirical patterns revealed in section 3. The second is to create an analytical frame-
work for quantifying two potential contributors to the increase in team productivity. The
model’s production process has two stages. In stage 1, teams are formed. In stage 2,
working hours are allocated within those teams. We describe these stages in reverse or-
der.

Taking the team’s composition and total output as given in stage 2, section 4.1 de-
scribes the model’s solution for allocating within-team working hours. Section 4.2 ex-
tends the model to include stage 1, the team formation process. Section 4.3 explains how
the theoretical model helps to interpret the empirical data. Section 4.4 shows how the
model permits changes in team productivity to be quantitatively decomposed into the
aforementioned two contributors to the team productivity increase, highlighting the role
that complementarities play in determining the productivity change. That decomposi-
tion, which is conducted in section 5.3, reveals that within-team reallocation of working
hours is a quantitatively important driver of changes in team productivity.

4.1 Labor allocation within teams

Consider a single firm (also called the employer) that employs a number of workers (in-
dexed by i) and that operates in a production setting consisting of a set of jobs (indexed
by j), each of which is completed by a team of workers. Let ϕij and Hij denote worker i’s
productivity and time endowment, respectively, on job j. Thus, Hij represents the maxi-
mum amount of time that worker i could devote to job j. Both ϕij and Hij are observed by
the employer and assumed to be stochastic draws from a joint distribution. Their correla-
tion in the population is denoted by ρϕH. For each job, a continuum of tasks, denoted by
Ω and indexed by s, must be completed by the team. The total measure of tasks, or |Ω|,
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is denoted by S. Let Ωij denote the set of tasks on job j to which worker i is assigned. For
simplicity, we assume that each task can be assigned to at most one worker.30

Job j’s total output is denoted Yj. Let qijs denote the amount of output that arises from
task s assigned to worker i on job j. A worker with productivity ϕij who works for hijs

hours on task s of job j has task-specific output of qijs = ϕijhijs. A Cobb-Douglas ag-
gregator over a continuum of tasks combines these task-specific outputs in the following
production function for job j:

Yj = exp
[∫

s∈Ω
ln
(
qijs
)γjs ds

]
. (4)

The (positive) parameter γjs can be interpreted as the weight that task s receives on job j.
We assume for simplicity that tasks are symmetric, i.e., γjs =

1
S .31

The employer’s problem is to allocate labor within each job by deciding how many
worker hours to assign to each task in that job. In this subsection, we take job j’s team as
given. Job j’s team is represented by the set

{
ϕij, Hij|i = 1, ..., nj

}
, with nj denoting job j’s

team size. Thus, each worker on job j’s team is fully described by their job-specific pro-
ductivity and time endowment. In section 4.2, we describe the team formation process.
Let Mij denote the (endogenous) measure of tasks that the employer assigns to worker i
on job j, and let hijs denote the hours that worker i is assigned by the employer to job j’s
task s. Because tasks are symmetric, in the optimal solution hijs must be equal over tasks
for the same worker, so the hours spent by worker i on job j, i.e., hij, satisfy hij = Mijhijs.
Thus, given the value of hijs, a worker who is assigned to a larger measure of tasks (i.e.,
Mij is large) will have higher working hours, hij, on job j.

Each unit of worker i’s output on job j, ϕijhij, is referred to as an “effective labor hour”.
Let cij denote the employer’s cost per effective hour of worker i’s labor on job j. The
total wage payment per hour, wij ≡ cijϕij, is assumed to be increasing in productivity.
Naturally, this implies that more productive workers earn a higher wage. Moreover, we
assume that the cost per effective labor hour is decreasing in productivity, i.e., cij is lower
for workers with higher ϕij.32

Taking Yj as given, the employer’s problem for job j can be stated as follows:33

30This is relatively innocuous under the continuous task assumption, because tasks are sufficiently small
so that one worker is enough.

31The employer’s formula for determining how many worker hours to assign to each of the job’s tasks
can easily be generalized to accommodate asymmetric tasks.

32A justification for this assumption is that other firms do not perfectly observe worker’s productivity.
Therefore, the firm need not pay the full wage to retain the worker.

33Equivalently, the employer can maximize production given the budget.
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min
hijs,Mij

(
∑

i
wijMijhijs

)
, (5)

subject to

Yj = ∏
i

q
Mij

S
ijs ,

qijs = ϕijhijs,

Mijhijs ≤ Hij,

∑
i

Mij = S.

That is, the employer assigns hours (for all workers and tasks) to minimize job j’s labor
costs, subject to both job j’s technological constraint and a requirement that each worker’s
total hours (across all tasks) on job j not exceed the worker’s time endowment.

Details of the solution are in Appendix A. The solution for hij is given by:

hijs =
RijYj

ϕij
(6)

hij =
MijRijYj

ϕij
, (7)

where Rij ≡
c−1

ij

∏i(cij)
−

Mij
S

is the reciprocal of worker i’s unit cost relative to the weighted

geometric mean of the reciprocals of unit costs calculated across team members. Intu-
itively, if the within-team relative marginal cost of allocating effective hour to worker i is
higher, then the solution assigns fewer hours to that worker. In general, the mass of tasks
assigned to each worker does not have a closed form solution. Total working hours for
job j′s team are the sum of the hours for each of its members, i.e.,

hj = ∑
i

hij (8)

Job j’s team productivity, Aj, is

Aj ≡
Yj

hj
=

(
∑

i

Wij

ϕij

)−1

, (9)

where Wij ≡ MijRij is the weight attributed to worker i in job j that comes from the labor
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allocation rule 7. This expression reveals how team productivity is influenced by the two
channels discussed in section 3.3, i.e., the individual productivity of team members (as
measured by ϕij) and the within-team allocation of labor that the employer determines
(as measured by Wij).

The intuition underlying the optimal assignment rule is clear from a rearranged Equa-

tion (7), i.e., ∑i wijhij = SYj ∏i
(
cij
)Mij

S . The employer’s problem is to find the assignment
with the lowest weighted average cost per effective working hour that will achieve a
given level of output, Yj. Given the assumption that more productive workers have a
lower cost per effective working hour, the employer starts by assigning the most produc-
tive worker (i.e., the one with the highest value of ϕij), exhausting her hours (if necessary)
before assigning the worker with the second-highest value of ϕij, and so on, until the re-
quired output, Yj, is achieved.34 The assignment of additional workers continues in this
fashion until all required tasks on job j are covered by the existing workers, at which point
the team size, nj, is determined.

Optimal within-team labor allocation when team members have heterogeneous pro-
ductivities requires that individual productivity be at least partially observed by the man-
ager who assigns the hours. The model’s assumption that the employer observes ϕij is
not always reasonable in a team setting. In fact, that is a reason why group-based (as
opposed to individual-based) incentive contracts are often used in teams.35 In our con-
text, however, it is reasonable to assume that the chief manager possesses information
about workers’ productivities and uses it when assigning hours to workers. This is espe-
cially so given that turnover rates at the firm are low for the institutional reasons previ-
ously described. Information about workers’ productivities is revealed to the employer
from the long job tenures and repeated observations of individual workers on a variety
of projects.36

A potential limitation of the model is that it does not explicitly incorporate the firm’s
decision to outsource, even though our empirical measure of team productivity is ad-
justed by the outsourcing cost. The firm may be more likely to outsource when industrial

34The implicit assumption is that the remaining employees are assigned to work on profitable activities
other than job j.

35It is not always the case, however, that individual output is hard to measure in team settings. Moreover,
group piece rates are sometimes used in teams even when individual output is easily measured. For exam-
ple, Koret, the garment manufacturing plant analyzed in Hamilton et al. (2003), switched its seamstresses
from individual piece-rate pay to a group piece-rate scheme in which they were allowed to self select into
teams. At Koret, individual output was easily measured and compensated via individual piece rates prior
to the change in the compensation system, which was made for reasons unrelated to the observability of
output.

36Our interview with the managers confirm the preceding assertions.
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demand is high, though two factors mitigate this concern. First, the average outsourcing
ratio (i.e., the ratio of total outsourcing costs to the total costs across all jobs that start in
a given year) hovers around the same level between the pre-crisis and post-crisis peri-
ods (i.e., 2005-2007, and 2010-2012). Second, if the crisis-induced drop in demand leads
to less outsourcing, then productivity may increase in those years via complementarities
among the team’s internal workers, given that they are more often jointly present with
less variation in their working hours.37 Similarly, in the post-crisis period (i.e., 2010-2013),
as demand improves, we would expect to see more outsourcing.38 This should reduce
team productivity, via complementarities among internal team members’ hours, given
that more of the work is being done by outsiders. But this mechanism works against our
findings, so to the extent that it is relevant, our empirical result becomes harder to detect
in the data.

4.2 Team formation process

We now describe stage 1 of the production process, extending the preceding setup to
model team formation. Doing so allows us to generate a sample of jobs, conditional
on parameter values, which is necessary for conducting a quantitative decomposition
of changes in team productivity.

In stage 1, given the value of Yj, let Nj
(
Yj
)

denote the size of the internal candidate
pool representing the firm’s workers who are available for assignment to job j. We assume
that the size of this pool is increasing in the level of required output, Yj More precisely,
letting α0 and α1 be strictly positive parameters, we specify the candidate pool size as
follows:

Nj
(
Yj
)
= ⌈α1Yα0

j ⌉, (10)

where ⌈x⌉ denotes the smallest integer that exceeds x. Note that nj ≤ Nj,recalling that nj

denotes the number of workers on job j’s team. The parameter α0 determines the relative
number of workers assigned to large and small jobs, whereas α1 determines the average
number of workers assigned to each job. Conditional on Yj, all randomness comes from
the random variables ϕij and Hij. Specifically, for each job j we take a set of independent
draws from the candidate pool. Given that those draws are independent across jobs,
one worker cannot explicitly be assigned to multiple jobs. However, the allocation of a

37In fact, in unreported results we find that controlling for start year, industry, and job content fixed
effects, there is a negative correlation between the outsourcing ratio and team productivity.

38In unreported results, we verified that the outsourcing ratio decreased in 2008-2009 and then increased
in 2010-2013.
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worker’s time across multiple jobs is implicitly captured in Hij, i.e., a particularly low
value of this job-specific time endowment can be interpreted as the bulk of worker i’s
time being consumed by jobs other than j, leaving little left to allocate to job j.

This team formation process renders the analysis tractable while capturing several es-
sential features of reality. In the data, the team formation decision is fully delegated to the
responsible manager. Search costs prevent the manager from considering the firm’s entire
workforce when staffing a job. There is also randomness in workers’ availability (e.g., for
family-related reasons). The candidate size rule in Equation (10) captures these realities
by assigning limited draws to each job and more draws to larger jobs. The randomness in
the draws of ϕij and Hij reflects managers’ constraints. In particular, suppose that more
productive workers tend to have lower time endowments (i.e., ρϕH < 0). This situation
captures a trade-off that commonly occurs in practice, i.e., a more productive worker is
often demanded by multiple jobs and, thus, has more limited time to spend on each job.

4.3 Connecting the model to data

To see how the model can generate the within-team hours concentration and across-team
positive correlation between team productivity and within-team hours concentration,
consider a sample of jobs whose output sizes, Yj, are given. For each job, we use Equation
(10) to assign a team of workers in stage 1. We then allocate labor to complete the jobs
following the stage-2 analysis in section 4.1. There are two considerations. One is that the
optimal assignment rule for allocating labor within the team requires assigning the most
productive workers the most work. But that objective is limited by the second considera-
tion, namely workers’ time constraints. When ρ ≥ 0, higher-productivity workers tend to
have more liberal time endowments. In that case, given that the optimal assignment rule
first exhausts the more productive workers’ time, hours concentrate on the most produc-
tive workers, and a team with more productive workers has a higher hours concentration,
on average.

When ρ < 0, the time constraints of the more productive workers tend to be more
binding, so that the team’s less productive workers are assigned more hours. Even in
this case, the model can generate an across-team positive correlation between team pro-
ductivity and the within-team hours concentration, for the following reason. Consider an
increase in ϕij for a team member i who is not team j’s rank-1 worker and whose time
endowment on job j is exhausted. Since ρ < 0, the increase in ϕij implies that a decrease
in Hij is likely, which would have two further implications under the assumption that the
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expected decrease in Hij is not too large. First, team productivity increases.39 Second,
because hij = Hij, the fractions of hours contributed by team members other than worker
i increase. In particular, the hours fraction contributed by the rank-1 worker, i.e., l1j, in-
creases. In other words, the denominator of the hours fraction (i.e., the team’s total hours)
is decreasing in individual productivity because hours can be assigned more efficiently
when individual productivity increases, and the high within-team hours concentration
therefore proxies for high average individual productivity within the team. As all work-
ers except (possibly) the least productive one exhaust their time endowment, we expect
the preceding channel to be important in driving the across-team correlation between
team productivity and the within-team hours concentration.

Which of these cases is most relevant is an empirical question.40 The forthcoming
calibration exercise detailed in section 5 provides a way to empirically estimate which
case is more relevant using the information contained in the distribution of the fractions
of working hours contributed by each team member. Our data support the case of ρ < 0.
We show that the simulated data replicate both of the aforementioned features of the
empirical data, i.e., the within-team hours concentration and the across-team positive
correlation between team productivity and the within-team hours concentration.

4.4 Complementarity and the two channels for team productivity changes

Section 3.3 defined two channels through which team productivity can increase. We now
analyze these channels in the context of the theoretical model and show how the presence
of complementarities amplifies both channels. Then, in section 5 we calibrate the model
parameters and quantify the relative importance of these two channels in explaining the
post-crisis increase in team productivity.

To see the role of complementarities in the model, start by observing that (from Equa-

39More specifically, from Equation (9), team productivity increases if changes in weights do not offset the
increase in ϕij. Given that the increase in ϕij and the expected decrease in Hij have opposite effects on the
total measure of tasks that can be completed by worker i, it is unclear how task assignments would change
across workers in the wake of an increase in ϕij. However, given that cij is assumed to be decreasing in ϕij,
Rij tends to increase in ϕij, putting more weight on the worker whose productivity increases.

40There may be alternative explanations for the within-team concentration of working hours. For exam-
ple, suppose that the workers assigned to a job are specialized on certain tasks. Their hours contributions
would then be determined by the importance of those tasks within the job. If the required hours contri-
butions are very large for some tasks and very small for others, this could explain the within-teams hours
concentration. Although such an alternative may play a role, at this firm the architects are generalists who
can perform a wide variety of tasks. Moreover, tasks can often be subdivided into smaller tasks, so that
the hours contributions for particular tasks are not necessarily fixed. Finally, unlike the mechanism for
hours concentration highlighted by our model, the alternative explanation does not readily explain why
within-team hours concentration increased after the crisis.
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tion 9) conditional on Wij, the elasticity of team productivity, Aj, with respect to team
member i’s productivity, ϕij, is41

∂ ln Aj

∂ ln ϕij
= Aj

(
Wij

ϕij

)
. (11)

Complementarity, which derives from the presence of Aj in this elasticity, amplifies the
amount by which team productivity increases in response to a marginal increase in the
productivity of an individual team member.42 This elasticity is positive, i.e., an increase
in a team member’s productivity increases that team’s productivity. Moreover, the indi-
vidual elasticities for each of the team’s workers sum to one, i.e., ∑i

∂ ln Aj
∂ ln ϕij

= 1. Therefore,
the elasticities for the individual workers are all smaller than one. Intuitively, an increase
in productivity for an individual will translate to a smaller impact on the team.

Equation 11 implies that in a team with heterogeneous productivities across workers,
conditional on labor allocation, a marginal increase in the productivity of the team’s least
productive worker yields the largest increase in team productivity. As a corollary, if we
increase the highest-productivity worker’s ϕij by a small amount and decrease the lowest-
productivity worker’s ϕij by that same amount, the within-team variance of ϕij would
increase, and team productivity would decrease.43 These features of the model capture
realistic aspects of team production, i.e., increasing the productivity of less experienced
workers reduces the risk of facing bottlenecks, and increasing the within-team dispersion
of individual productivities makes communication/coordination harder.

Finally, a team is more productive if more productive workers are assigned more tasks.
Given that the measure of tasks assigned, or Mij, is endogenous, labor reallocation in-

41Any change in the weight after a change in individual productivity either comes from reallocation of
tasks (i.e., a change in Mij) or an adjustment of hours due to a change in the marginal cost per effective
hour (i.e., a change in Rij).Thus, the current exercise can be viewed as the partial effect of an individual
productivity change, holding the indirect effects constant.

42More precisely, let i1 and i2 denote two workers on the team for job j. Conditional on Mij, the cross
partial derivative of team productivity with respect to those two workers’ individual productivities is

∂2 ln Aj

∂ ln ϕi2 j∂ ln ϕi1 j
=

Mi1 jRi1 j Mi2 jRi2 j

ϕi1 jϕi2 j
A2

j > 0.

Despite this positive cross partial derivative, the second-order elasticity with respect to worker i′s own

productivity is negative, i.e.,
∂2 ln Aj

∂ ln ϕ2
ij
< 0. In fact, it is easily verified that the second-order elasticities sum to

zero, i.e., ∑i2
∂2 ln Aj

∂ ln ϕi2 j∂ ln ϕi1 j
= 0.

43In the reverse case, i.e., we decrease the highest-productivity worker’s ϕij by a small amount and in-
crease the lowest-productivity worker’s ϕij by that same amount, the within-team variance of ϕij would
decrease, and team productivity would increase.
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duces a larger increase in team productivity than would occur if individual worker pro-
ductivity were to increase while maintaining the original labor allocation. For example, if
each worker’s productivity were to improve uniformly by a certain proportion, then the
increase in team productivity would exceed this proportion because of task reallocation.
The labor reallocation effect also depends on the second-order derivatives. To illustrate,
note that the elasticity with respect to the weight Wij, is

∂ ln Aj

∂Wij
= − 1

ϕij
Aj. (12)

Let ∆W denote a discrete change that reallocates the weights, reducing the task assign-
ment of a less productive worker, i1, by some amount and shifting it to a more pro-
ductive worker, i2. The resulting change in logarithmic team productivity is ∆ ln Aj =

∆WAj

(
1

ϕi1 j
− 1

ϕi2 j

)
, which is positive given that ϕi2 > ϕi1 . Moreover, this productivity in-

crease is larger when other team members are more productive (i.e., when Aj is higher),
which reflects complementarity.

5 Empirical analysis of theoretical model

We next conduct empirical analysis motivated by the theoretical model. Section 5.1 cali-
brates the model’s parameters, section 5.2 examines the model fit and provides evidence
that supports the model’s mechanisms, and section 5.3 quantifies the relative contribu-
tions of the two channels of influence on team productivity changes.

5.1 Calibration of the model’s parameters

The empirical evidence from section 3.1 reveals that the crisis induced a structural change
in team productivity in the workplace. To capture this change quantitatively using the
theoretical model, and to decompose it into parts due to increased worker-level produc-
tivity and within-team labor reallocation, at least some of the model’s parameter val-
ues must change over time. We now summarize how we assign numerical values to the
model’s parameters. For brevity, our discussion highlights the main procedures and re-
sults, deferring the details to Appendix B. We begin by imposing distributional assump-
tions. For each job j, the draws of candidates are assumed to be independent and identi-
cally distributed. Specifically, candidate i’s productivity parameter, ϕij, and time endow-
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ment parameter, Hij, are assumed to be jointly log-normally distributed, i.e.,(
ln ϕij

ln Hij

)
∼ N (µ, Σ) , (13)

where µ =

(
µϕ

µH

)
is a vector of means, and the covariance matrix Σ contains two variance

parameters (σϕ and σH) and a correlation parameter, ρϕH.
We define a pre-crisis sample of jobs (i.e., those starting from 2005 to 2007) and a post-

crisis sample of jobs (i.e., those starting from 2010 to 2012). For both time periods, we
must assign values to the following seven parameters:(

µϕ, σ2
ϕ, µH, σ2

H, ρϕH, α0, α1

)
.

We calibrate three of these parameters (µH, σ2
H, α1) directly from the data in the two sam-

ples, yielding pre-crisis and post-crisis values for each parameter. Parameter values for(
µH, σ2

H
)

are assigned using the empirical average and standard deviation of the hours of
the workers, separately before and after the crisis. Motivated by the fact that the largest
observed team size is close to 100, the parameter α1 is chosen such that the biggest job
gets assigned 300 draws, both before and after the crisis. Given those parameter val-
ues, we next generate simulated data sets (both pre and post-crisis) that we use to assign
values for (µϕ, σ2

ϕ, ρϕH, α0) using the method of simulated moments. That is, in both the
pre and post-crisis samples, values of (µϕ, σ2

ϕ, ρϕH, α0) are chosen to minimize a distance
function that is the sum of the squared deviations between moments computed using the
empirical data and the corresponding moments computed using the simulated data. Our
target moments are calculated from the distributions of team productivity, output size,
and within-team labor allocation.

The preceding steps deliver pre and post-crisis values for all seven parameters, as
shown in Table 6. The calibrated parameters reveal that the crisis induces an increase
in µϕ and a decrease in σϕ. The mean of the time endowment, µH, slightly increases
after the crisis, and the standard deviation of the time endowment, σH, does not change
significantly. The calibrated ρϕH increases after the crisis. Its negative sign is consistent
with the intuition that more productive workers tend to be time constrained.44 Together
with the fact that µH increases after the crisis, a higher value of ρϕH implies that more

44This can also be understood by observing that, from the standpoint of a social planner who is optimally
allocating labor, the implicit price of productive workers will be higher because of their higher marginal
output.
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hours are allocated to more productive workers after the crisis. The value of α0 is almost
the same before and after the crisis. Figure 15, which plots the implied density function
of ln ϕij before and after the crisis, illustrates the productivity increase arising from the
crisis. The increase in worker-level productivity happens at the lower and middle parts
of the distribution, whereas the change is smaller for high-productivity workers.

The motivation for our calibration procedure can be understood as follows. In the
model, team productivity relates closely to a weighted sum of the team members’ indi-
vidual productivities, as described in Equation (9). Thus, the observed team productivity
distribution can be used to infer the worker productivity distribution. By focusing on
the entire productivity distribution, we avoid the difficulty of using team output to infer
team members’ individual contributions to that output. Moreover, the observed hours
contributed by each worker naturally help us to determine the parameters of the time
endowment distribution because the model’s optimal assignment rule predicts that all
workers (except for the least productive one) exhaust their time endowments.

The within-team hours distribution helps us to identify the correlation between pro-
ductivity and the time endowment because, conditional on other parameter values, labor
concentration is an increasing function of ρϕH. For example, a job’s hours are more con-
centrated when highly-productive workers have more time to devote to the job. In a sam-
ple with heterogeneous output sizes the relative productivity between larger and smaller
jobs helps to determine the value of α0. This is because the parameter α0 determines
how many candidates are allocated to large jobs relative to small ones. If the number
of talented workers is proportionally increasing, for example, then output size does not
substantially affect team productivity. Finally, the value of α1 does not have real effects
on the model other than setting an upper bound for team size because other parameter
values are chosen accordingly to match the empirical moments. Therefore, we choose α1

such that the number of draws for the job with the highest output size is somewhat higher
than the observed team size.

5.2 Model fit and validation

Concerning model fit, Figures 16 to 19 show the simulated and empirical density func-
tions of each targeted distribution. In all figures, the dashed lines correspond to the em-
pirical data and the solid lines to the simulated data. Figures 16 and 17 show that the
simulated data fit the distribution of team productivity and output size well for both the
before-crisis and the after-crisis sample. The distributions of the hours fractions, shown
starting from Figure 18 to Figure 19, also exhibit good fit. Figures 20 and 21 show the fit
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of the cumulative hours contributed by the five workers who contribute the most hours.
Even though the distributions of working hours are not explicitly targeted, the model
explains them reasonably well. Finally, Figures 22 and 23 show the scatter plots of the
rank-1 worker’s hours fraction, conditional on output size, both before and after the cri-
sis. Even though the conditional distribution is not explicitly targeted, the simulated data
closely approximate the shape of the plots.

Concerning model validation, our goal is to show that the model replicates the empir-
ical patterns that we document in section 3 and to demonstrate that our claims in section
4.3 are corroborated by the simulation. We first estimate the correlation between team
productivity and the natural logarithm of the rank-1 hours fraction using the simulated
data. The results are reported in Table 7. Similar to Table 4, we find a significant positive
correlation between the rank-1 hours fraction and team productivity. Moreover, taking
advantage of the simulated data, we verify that the teams with a higher rank-1 hours
fraction tend to have higher average productivity and, therefore, higher team productiv-
ity. We then estimate regressions of the following form to examine job-level changes in
several dependent variables in response to the crisis:

Outcomej = β0 + β1A f terCrisisj + β2 ln Yj + uj, (14)

using four measures of Outcomej: (1) ln Aj, the natural logarithm of productivity;45 (2)
ln TeamSizej; (3) ln l90

j ; and (4) ln h1j. The latter three measures appeared earlier in Table 5,
based on the empirical data. Measures 2 and 3, which are defined and used in Table 5, are
for the purpose of validating the model mechanisms that affect team productivity. When
measure 4 is the outcome variable, as in section 3 based on the empirical data, we use the
jobs with team sizes no smaller than five.

Table 8 reports estimates of post-crisis changes in the job-level variables. The first
column shows that in the simulated data, job-level productivity increases by 7.5%. This
is the same as in the first column in Table 3 because we included the variable as one of
the targets. The effect of labor reallocation is reflected in the second and third columns
of Table 8, where it is shown that ln l90

j increases, and ln TeamSizej decreases, after the
crisis, as is true in the empirical data (Table 5). These results are consistent with the firm
relying on smaller teams in the wake of a crisis-induced reduction in demand. Overall, the
calibrated model successfully reproduces the qualitative and quantitative patterns in the
data, thereby providing support for the relevance of the model’s mechanisms described
in section 4.4.

45Output size is not controlled in this regression.
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5.3 Quantitative decomposition of changes in team productivity

We now quantify the relative importance of the two channels that affect team productiv-
ity described in section 4.4, using an approach directly based on the model.46 We start
by calibrating the model and generating counterfactual jobs and teams in the post-crisis
environment for each job in the pre-crisis sample. By performing a job-to-job compari-
son, we alleviate the concerns posed by confounding job-specific factors, such as whether
differences in output size may drive the team productivity difference. For each job in
the pre-crisis sample, we generate ten counterfactual jobs. In each of those counterfac-
tual jobs, a team is formed and production occurs in the post-crisis environment.47 The
counterfactual jobs are indexed by p, so Ajp denotes team productivity for counterfactual
simulation p of job j.

A complication that arises when using the model directly is that labor allocations that
are feasible in the actual job may be infeasible in the counterfactual job due to time con-
straints.48 To avoid this, we must find a counterfactual job that is as “close” as possible
to the original job but that maintains a feasible labor allocation that violates no time con-
straints. We have designed an algorithm to accomplish that. After applying the algorithm
to identify such a counterfactual job, we use the theoretical model to decompose the team
productivity change into the two channels previous discussed.

To find the nearest feasible allocation for each counterfactual job, we solve the follow-

46As observed by a referee, this decomposition of the increase in team productivity evokes the well-
known decomposition of the increase in individual worker productivity at Safelite AutoGlass (Lazear
(2000)), though with some important differences. Specifically, Lazear’s decomposition results from many
workers’ decisions to select across firms in response to an individual employer’s decision to change its com-
pensation system to induce incentives, whereas our decomposition results from an individual employer’s
assignment of its workers’ hours across tasks within teams in response to an exogenous change in demand
for the firm’s services.

47More precisely, output size is held constant, and the job duration is predicted from quantile regressions
that use the natural logarithm of the job duration as the dependent variable, with A f terCrisisj and the
natural logarithm of output on the right-hand side, i.e., ln Tj = β0 + β1 A f terCrisisj + β2 ln Yj + uj. The ten
chosen quantiles are equally spaced, starting at the 10th percentile and ending at the 90th percentile. Teams
are formed following the joint distribution of ϕij and Hij that we calibrated using the after-crisis sample.
We find quantitatively similar results when predicting job duration using a linear regression.

48Consider a simple illustration in a two-worker team. Holding the less productive worker’s productivity
constant, consider a 20% productivity increase for the more productive worker that occurs simultaneously
with her time constraint becoming more binding. The resulting team productivity increase may be less
than 10% (which is the increase in the average of the two individual productivities, i.e., 0% and 20%).
This would lead to a conclusion that the effect of individual productivity exceeds 100%, while the labor
reallocation effect is negative.
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ing problem by choosing the task allocation profile, Mijp:

min
Mkjp

min(nj,njp)

∑
k=1

(
Mkjp − Mkj

)2 , (15)

subject to
hijp = Mijphijps ≤ Hijp, f or i ∈

{
1, 2, ..., njp

}
, (16)

∑
k

Mkjp = S, (17)

where hijps is defined as in Equation (6). Details of the algorithm used to solve the pre-
ceding problem are in Appendix C. The team sizes might differ between the actual and
counterfactual teams. In such cases, we can only match the measure of tasks for the set
of workers with the same rank indexed by k, as shown in the objective function. To min-
imize error, we sort the workers in team j by Mkj from the highest to the lowest, and
sort the workers in the counterfactual team jp by the potential of task completion from
the highest to the lowest.49 This sorting method ensures that the errors generated from
the matching of high contributors are smaller, which results in lower overall errors.50This
gives us the counterfactual team productivity with the nearest feasible labor allocation
Ajp.

We then calculate the following decomposition of the average team productivity change

1
JP ∑

j,p

(
ln Ajp − ln Aj

)
=

1
JP ∑

j,p

(
ln Ajp − ln Ajp

)
+

1
JP ∑

j,p

(
ln Ajp − ln Aj

)
, (18)

where the first term on the right-hand side accounts for the effect of labor reallocation
and the second term for the individual productivity change.

Let ln Ajp denote the natural logarithm of team productivity in the counterfactual team
that results from our algorithm (i.e., nearest feasible labor allocation). Table 9 reports the
decomposition results. The effect of labor reallocation is calculated as 0.052, or 68.4%
(i.e., 0.052 / 0.076) of the average team productivity change, while the average individual
productivity change is 0.024, or 31.6% of the average team productivity change.

49From Equation 21 in Appendix B, this implies sorting workers by cijϕijHij from the highest to the lowest.
50Searching over all permutations and finding the global minimum is computationally very expensive.

Alternative sorting methods (e.g., by hours, by productivity, and randomly) yield higher errors than using
our chosen method.
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6 Conclusion

This study opened the black box of white-collar team productivity and revealed what
drives it in teams of knowledge workers in a representative firm. One of our key con-
tributions is a quantitative decomposition of the crisis-induced increase in team produc-
tivity into two channels of influence. The decomposition is based on a new theoretical
model that describes the within-team allocation of labor hours and its implications for
team productivity. The model might be enriched in a number of interesting directions
in future work, e.g., incorporating features like problem solving, coordination, and peer
learning, all of which are relevant in team settings. The Cobb-Douglas technology, though
it performed well and was able to closely match some key features of our data, might also
be generalized in future work, which would allow additional functions of teams to be
fruitfully addressed that we abstract from in this analysis.

Our results are summarized as follows. The financial crisis led team productivity to
increase by nearly 7.5%, arising from both an increase in individual labor productivity
and a within-team reallocation of labor. The theoretical model successfully replicates the
distributions of team productivity and labor allocation. A decomposition based on the
theoretical model reveals that 2.5 percentage points come from an increase in individual
productivity, and the remaining 5 percentage points of the team productivity increase
come from labor reallocation. Additionally, we find evidence that within-team working
hours are heavily concentrated, with a large fraction of the work being done by a small
number of workers, particularly the one worker who invests the most hours. The fraction
of time spent by the team’s member with the greatest hours contribution is found to be
positively associated with team productivity.

In a study that is based on a single firm within a country that has distinctive labor
market institutions, it is natural to question the extent to which the analysis and results
might generalize. Potential threats to external validity arise for several reasons. This
firm might not be representative of architectural and engineering consultancy firms (even
within Japan), the industry itself may be idiosyncratic even if this firm is representative
of the industry, the institutional environment is specific to Japan, the global financial cri-
sis might be an idiosyncratic example of a major recession, etc. While such issues are
acknowledged, a number of factors mitigate them and lead us to expect our results to be
relevant for teams of knowledge workers within the U.S. and other economies.

It is true that Japan and the U.S. respond differently to negative demand shocks.
Specifically, downward adjustments in employment (as opposed to hours) are relatively
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more common in the U.S. than in Japan.51 This institutional difference does not pose a ma-
jor threat to external validity, because our primary objective is to study not productivity
over the business cycle but rather the productivity effects of within-team allocation of la-
bor hours, using the Great Recession as a convenient and plausibly exogenous treatment
that induces significant temporal variation in hours. For that purpose, Japan’s distinc-
tive emphasis on hours adjustments is more of a plus than a liability.52 Concerns that the
Great Recession might be idiosyncratic among recessions are similarly allayed, because
our main interest is not in the productivity effects of recessions per se.

The highly educated workers in our sample are comparable to salaried (as opposed
to hourly) workers in the U.S., for whom layoffs would not be used but hours would
fall in recessions. Our empirical evidence that highly productive teams of such educated
knowledge workers have a high concentration of working hours also supports the oft-
cited Pareto Principle of business management, which is mainly discussed anecdotally
with reference to employment settings outside of Japan (particularly the U.S.).53 And
again, as discussed in the introduction, team production is a widespread phenomenon
internationally as well as in Japan and is of increasing importance in the construction
industry. Thus, the employer’s problem of within-team labor allocation is relevant to
other firms within and outside of this industry.

After multiple extensive conversations with the firm’s management, nothing about
our firm stands out to us as being particularly unusual or idiosyncratic in its character-
istics, services provided, industry, business strategy, management practices, production
process, position within the product and labor markets, use of teams, etc., that would lead
us to worry that the white-collar team productivity issues that we study here are pecu-
liar to this firm. Thus, while future research in other production settings is desirable, we

51While U.S. employers rely on layoffs and firings (particularly in manufacturing), they rely even more
on natural attrition. That is, the relatively high quit rates in the U.S., even during recessions, allow firms
to achieve timely downward adjustments in their labor inputs simply by not replacing departed work-
ers (Lazear and Spletzer, 2012). Such a labor supply response (via quits) is unimportant in Japan, where
salaried workers will not be deciding to exit the firm during a recession.

52Setting aside this point, Japan’s institutional features that differentiate it from the U.S. and other in-
dustrialized economies should not be overstated. Even in Japan, adjustments in (non-standard contract)
workers occur. Japan’s prohibition of the “abuse of the right to dismiss” applies only to regular workers.
Terminating contracts with workers hired under fixed-term contracts is not prohibited. Moreover, even in
lightly regulated labor markets in which it is easier than in Japan to shed workers, downward adjustments
in hours occur and are typically among the first employer responses in a recession.

53Highly right-skewed pay distributions, within and even across firms, might be interpreted as indirect
evidence of the Pareto Principle of business management. For example, technology firms in the U.S. (like
Google) are known for having highly right-skewed pay distributions in which some workers get extremely
high salaries and bonuses to reward their high performance. Shaw (2009) provides such evidence for soft-
ware workers. Such high performance levels from the stars plausibly require very long hours, implying a
highly right-skewed hours distribution.
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anticipate that such inquiry should be corroborative. In particular, we expect our results
from Japan to generalize to the U.S. and other industrialized economies, and specifically
to large segments of the white-collar labor force, such as knowledge workers employed
in R&D, consulting, law, accounting, and finance.
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(1) (2) (3)
Pre-crisis definition Post-crisis definition ∆Ât ∆Ât ∆Ât

2005 ≤ StartYear ≤ 2007 2010 ≤ StartYear ≤ 2012 0.075∗∗∗ 0.066∗∗∗ 0.115∗∗∗

(0.024) (0.023) (0.033)

Industry, Job Content fixed effects No Yes Yes
Time trend of rank-1 worker’s age No No Yes

Sample size 4011 4011 4011
Adj. R2 0.002 0.099 0.100

Note: ∆Ât is the productivity change after controlling for the fixed effects indicated in
the table. Standard errors are reported in parentheses. Statistical significance at the 1%
level on a two-tailed test is indicated by ∗∗∗.

Table 3: Change of productivity

AdjRevj
hj

ln l1j 0.526∗∗∗

(0.024)

Sample size 4011
Adj. R2 0.197

Note: Industry and job content fixed effects are controlled. Standard errors are reported
in parentheses. Statistical significance at the 1% level on a two-tailed test is indicated by
∗∗∗.

Table 4: Explaining team productivity using hour fraction

Outcome Change
after crisis

Sample size Adj. R2

ln TeamSizej −0.043∗∗∗ 4011 0.738
(0.016)

ln l90
j 0.052∗∗∗ 4011 0.693

(0.016)
ln h1j −0.090∗∗∗ 3060 0.801

(0.022)
Note: Estimation results of Equation (3). Sample includes jobs with
2005 ≤ StartYear ≤ 2007 or 2010 ≤ StartYear ≤ 2012. Regressions control for industry
and job content fixed effects. Standard errors are reported in parentheses. Statistical
significance at the 1% level on a two-tailed test is indicated by ∗∗∗.

Table 5: Change of job-level variables after crisis
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Aj

ln l1j 0.442∗∗∗

(0.017)

Sample size 3689
Adj. R2 0.155

Table 7: Validating the correlation between team productivity and the rank-1 worker
hours fraction
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Note: Histogram of ln
AdjRevj

hj
overlaid with the density function (depicted with a dashed

line) of a normal random variable with the same mean and standard deviation as those
of the histogram.

Figure 1: Distribution of log productivity in data

Note: Adjusted revenue for each job is plotted on the horizontal axis, and the correspond-
ing value added measure is plotted on the vertical axis.

Figure 2: Adjusted revenue and value added
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Note: Average duration (in days) of jobs that start in each year and are completed before
the end of the sample period.

Figure 3: Average duration of jobs, 2004 to 2016

Note: Histogram of l1j, or the fraction of hours contributed by the rank-1 worker.

Figure 4: Empirical distribution of the fraction hours contributed by the rank-1 worker
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Note: Fraction of hours contributed by the rank-1 worker, l1j, is on the vertical axis, and
ln AdjRevj is on the horizontal.

Figure 5: Team productivity, rank-1 worker’s hours fraction, and output size

Note: Total annual amount of orders in the industry survey. Data are from the Current
Survey on Orders Received for Construction, conducted by the Ministry of Land,
Infrastructure, Transport and Tourism (MLIT).

Figure 6: Industry demand, 2004 to 2016
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Note: Sum of the revenues from the jobs starting in each year. Year 2008 normalized to 1.

Figure 7: Total revenue by start year, 2004 to 2013

Note: Number of jobs starting in each year with revenue no smaller than one million
Japanese yen. Year 2008 is normalized to 1.

Figure 8: Number of jobs by start year, 2004 to 2013
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Note: For each year, the figure plots average adjusted revenue per hour,
AdjRevj

hj
, for the

selected sample of jobs, with the average calculated as the ratio between the sum of
adjusted revenue and the sum of total hours over all jobs starting in the same year.

Figure 9: Revenue per hour, 2004 to 2013

Note: Average age of rank-1 worker across jobs that start in each year (from 2004 to 2013),
after controlling for client industry and job content fixed effects. Year 2008 is normalized
to 1.

Figure 10: Average rank-1 worker’s age, 2004 to 2013
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Note: Starting year fixed effects (from 2004 to 2013) after controlling for the time trend of
the average rank-1 worker’s age. Year 2008 is normalized to 1.

Figure 11: Revenue per hour adjusted by time trend of average rank-1 worker’s age, 2004
to 2013

Note: Average adjusted revenue per job (2004 to 2013).

Figure 12: Adjusted revenue per job, years 2004 to 2013
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Note: Each point in the scatter represents the average monthly total working hours across
workers. Only working hours on revenue-generating jobs are included. The solid line
connects the square points, each of which is an annual average.

Figure 13: Average working hours, 2004 to 2013

Note: Each point in the scatter represents the average number of jobs in which each
worker participates. The solid line connects the square points, each of which is an
annual average.

Figure 14: Average number of jobs assigned to each worker
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Note: Implied distribution of ln ϕi, before and after the crisis.

Figure 15: Calibrated density function of ln ϕi

Figure 16: Fit of Aj, Yj, before crisis

Figure 17: Fit of Aj, Yj, after crisis
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Figure 22: Fit of l1j conditional on ln Yj before crisis

Figure 23: Fit of l1j conditional on ln Yj after crisis
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Appendix

A Model solution

Given the team composition, meaning the values of ϕij and Hij for all workers on team j,
the within-team labor allocation problem is

min
hijs,Mij

(
∑

i
wijMijhijs

)
, (19)

subject to

Yj = exp

[
∑

i

Mij

S
ln
(
ϕijhijs

)]
,

qijs = ϕijhijs,

wij = cijϕij,

Mijhijs ≤ Hij,

∑
i

Mij = S.

We first ignore workers’ time constraints and take Mij as given to solve for the optimal
hijs. The Lagrangian is

L = ∑
i

cijϕijMijhijs + λ

(
Yj − exp

[
∑

i

Mij

S
ln
(
ϕijhijs

)])

The first-order condition (for task s0 assigned to worker i0) is:

∂L
∂hi0 js0

= ci0 jϕi0 jMi0 j − λ exp

[
∑

i

Mij

S
ln
(
ϕijhijs

)] Mi0 j

S
1

hi0 js
= 0.

Since at the optimum Yj = exp
[
∑i

Mij
S ln

(
ϕijhijs

)]
, we have

qijs0 =
λS−1Yj

ci0 j
,
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so that for two tasks (s0 and s1) assigned to worker i0 and i1,

qijs0

qijs1

=
c−1

i0 j

c−1
i1 j

.

Let qijs = Bc−1
ij for all s. Then

Yj = exp

[
∑

i

Mij

S
ln
(

Bc−1
ij

)]
,

which can be rewritten as

B =
Yj

exp
(

∑i
Mij
S ln c−1

ij

) .

Then

qijs =
c−1

ij

exp
(

∑i
Mij
S ln c−1

ij

)Yj,

and (using qijs = ϕijhijs)

hijs =
c−1

ij

exp
(

∑i
Mij
S ln c−1

ij

) Yj

ϕi
=

RijYj

ϕij
, (20)

where Rij =
c−1

ij

exp
(

∑i
Mij

S ln c−1
ij

) .

Next, plugging in the optimal hijs into the objective function, total costs are equal to

∑
i

wijhij = SYj ∏
i

(
cij
)Mij

S .

Therefore, the optimal Mij is determined by assigning as many tasks to workers with the
lowest cij as possible. Under the assumption that workers with higher ϕij have lower cij,
the optimal assignment rule first exhausts the time endowment of the most productive
worker before assigning the worker with the second-highest value of ϕij, and so on, until
the required output, Yj, is achieved.
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B Calibration and simulation

We begin by describing how we calibrate (α1, µH, σ2
H) directly from the data, starting with

α1. Given that the size of the candidate pool determines the upper bound of team size,
we choose a value for α1 such that the maximum size of the candidate pool is somewhat
higher than the observed largest team size. Given that the largest team sizes are similar
before and after the crisis (i.e., 98 before and 97 after), we hold the size of candidate pool
for the largest job constant before and after the crisis. Specifically, we choose the value
of α1 such that the job with highest output size in the sample is given 300 draws, or
α1 = α̃1

(
Y−α0

max

)
,where Ymax is the largest revenue size in the sample, and α̃1 = 300. The

number 300 is large enough that the subsequent team selection process could reasonably
result in a team of 100, which is roughly the maximum team size observed in the data.
Note that this assumption makes α1 a function of α0. Therefore, the value of α1 is chosen
together with α0 in a later stage of simulation. Since we choose other parameter values to
match the empirical moments, the choice of α̃1 does not have a real impact on the model
behavior.54

Next, parameter values for
(
µH, σ2

H
)

are assigned using the empirical average and
standard deviation of the hours of the workers. For teams with five or fewer workers,
we use the rank-1 to rank-(nj-1) workers. For example, in a team with three workers (i.e.,
nj = 3), only the hours of the two workers who contribute the most to the team’s total
working hours are included in the computation of the mean and standard deviation. For
teams with more than five workers, we include only the rank-1 to rank-4 workers. Both
µH and σ2

H are computed separately for the pre-crisis and the post-crisis samples to al-
low both parameters to potentially change over time. The optimal assignment rule in the
model implies that all workers in the team, except possibly for the least productive one,
exhaust their time endowments. Therefore, the distribution of observed hours is infor-
mative about the distribution of time endowments because the two distributions coincide
for all workers (except possibly for the least productive one). But including workers with
trivial hours contributions (e.g., those beyond the team’s top four contributors of hours)
are likely to introduce noise into the calibration. We find that our measure matches the
observed hours reasonably well.

Simulation of the model requires us to specify the worker’s cost per effective hour cij.

From the expression for Rij, i.e., Rij =
c−1

ij

exp
(

∑i
Mij

S ln c−1
ij

) , multiplying all cij by a constant

54For example, if the number of draws increases, then the likelihood of taking a draw of a productive
worker would be higher, but changing the parameters of the productivity distribution could result in the
same effects. When we set α̃1 at 200 rather than 300, the results do not change qualitatively.

59



will not change the value of Rij. Since cij affects labor allocation only through the value
of Rij, for the purpose of simulation, estimating the value of cij up to a proportion (equiv-
alently, the value of ln cij up to a constant) is sufficient. We estimate the distribution of
ln cij (up to a constant) using the following steps. First, using the salary data from 2012 to
2016, we estimate the wage per hour that is driven by variation in worker productivity,
by estimating the following regression:

ln Salaryiy = β0 + β1 ln Tenureiy + ψHL
iy + ψYear

y + eiy,

where Salaryiy is the annual salary for worker i in year y, Tenureiy is worker i′s tenure
in year y, ψHL

iy indicates individual effects for worker i’s level within the firm’s job hi-
erarchy in year y, and ψYear

y indicates year effects.55 We interpret the residual from this
regression as an estimate of ln wiyhiy, based on the idea that the remaining variation in
the annual salary after controlling for tenure, workers’ job rank, and year effects captures
the salary variation driven by productivity differences. We take the wage distribution
as time invariant because we only have salary data from 2012 to 2016. Subtracting ln hiy

from ln wiyhiy yields an estimate of the logarithmic value of the wage, ln wiy. After sub-
tracting the sample median from this estimated value of ln wiy, we obtain a distribution
of normalized logarithmic hourly wages across workers.56

Given the parameters of the productivity distribution, we can calculate percentiles of
ln ϕij, normalized by subtracting the median. Recalling that wij is monotonically increas-
ing in ϕij, we assign the worker at percentile q in the ln ϕij distribution with the value of
ln wij at percentile q in the ln wij distribution. Finally, recalling that ln wij = ln cij + ln ϕij,
we can calculate the normalized ln cij at percentile q in the ln ϕij distribution by subtract-
ing the value of the normalized ln ϕijfrom the value of the normalized ln wij.

The parameters (µϕ, σ2
ϕ, ρϕH,α0) are calibrated by matching the moments computed

using the actual data to those computed using a simulated data set. To construct the
simulated data set, we begin by assuming S = 1, recalling that S is the measure of tasks in
a job.57 The units of the marginal distribution of time endowments, Hij, are measured in
days to render hours comparable across jobs. Therefore, in the simulation, each worker’s
total time endowment, H̃ij, is determined by H̃ij = HijTj, where Hij is the daily time
endowment and Tj is the job duration. The duration of each job is taken from data and

55The results do not change significantly in a specification that omits ψHL
iy .

56Normalization by subtracting sample mean yields a similar distribution of ln wiy.
57The choice of S does not have real effects in the model. To see why, note that if S is doubled while

workers’ productivities are increased by the same factor, then everything remains the same except that the
measure of tasks assigned to each worker doubles.
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treated as exogenous.58 The following 3-step procedure yields values for (µϕ, σ2
ϕ, ρϕH, α0).

First, for each job j in the sample, simulated values of Yj are drawn from the real data.
Second, various moments (defined below) are constructed using both the empirical and
simulated data. Third, values for (µϕ, σ2

ϕ, ρϕH, α0) are chosen that minimize a distance
function that is the sum of the squared deviations of the empirical moments from their
corresponding simulated values.

We next describe the simulation procedure in more detail. Consider the team forma-
tion stage of the model. Given the simulated values for Yj , the values of

(
µH, σ2

H, α1
)

, and random values for (µϕ, σ2
ϕ, ρϕH, α0), Nj draws are taken from the joint distribution

of
(
ln ϕij, ln Hij

)
,recalling that Nj is determined from Equation (10).59 Then workers are

assigned to tasks as described in section 4.1. As described in the model, the labor assign-
ment of each simulated job j takes Yj as given. Working hours, team productivity, and the
total hours contributed by the workers (by rank) are calculated according to equations
(6), (9), and (7).

Calculating the optimal hours for each task, given a certain worker and job, requires
knowledge of the optimal task assignment Mij. In general, Mij must be solved for numer-
ically using the following two-step procedure. The first step computes the realized team
size. For every integer value of ntemp

j from 1 to Nj, we test whether a team composed of

the most productive ntemp
j workers can complete the job. We do so by assuming that all

workers exhaust their time endowments, which permits the following closed-form solu-
tion for Mij :

Mij

S
=

cijϕijHij(
∑

nj
i=1 cijϕijHij

) . (21)

If the total measure of tasks allocated under this assumption exceeds S, then the team of
ntemp

j workers can complete the job. If nj workers can complete the job but nj − 1 cannot,
the realized team size is nj, and the loop for finding the realized team size stops. If a team
of all Nj workers cannot complete the job, the job is regarded as failed and is dropped

58The contracted job duration is determined by a deadline that is stated within the contract that is signed
at the start of the job. Although the observed job duration may differ from the contracted job duration due
to unexpected events, such events are uncommon and should be independent across projects in the sample.

59Drawing from the joint distribution of ln ϕij and ln Hij involves first taking draws aij and bij from the
standard normal distribution and then using the following matrix multiplication:(

ln ϕij − µϕ

ln Hij − µH

)
=

(
σϕ

√
1 − ρ2

ϕH σϕρϕH

0 σH

)(
aij
bij

)
.

It is easy to verify that the resulting random variables have the desired joint distribution. The draws of aij
and bij are fixed throughout the simulation process.
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from the sample.60 The second step solves the optimal task assignment across the nj

workers. Since the most productive nj − 1 workers exhaust their time endowment, we
have for i = 1, 2, ...nj − 1,

Mijhijs = Mij
c−1

ij

exp
(

∑i
Mij
S ln c−1

ij

) Yj

ϕij
= Hij, (22)

and
nj

∑
i=1

Mij = S. (23)

Let Dj = exp
(

∑i
Mij
S ln c−1

ij

)
. From the above equations, we can express Mij as a function

of Dj for all workers. Plugging the expressions for Mij into the definition of Dj reveals
that for job j, Dj satisfies

ln Dj = S−1Y−η
j Dj

nj−1

∑
i=1

cijϕijHij ln c−1
ij (24)

+

1 − S−1Y−η
j Dj

nj−1

∑
i=1

cijϕijHij

 ln c−1
nj j

,

which is a nonlinear equation for a single variable. By solving this equation for Dj nu-
merically, we can then solve the optimal task assignment Mij for all workers.

Values for
(

µϕ, σ2
ϕ, ρϕH, α0

)
are chosen by matching the moments calculated using the

simulated sample and the corresponding empirical moments. The procedure is applied
twice to obtain two sets of values (pre-crisis and post-crisis) for

(
µϕ, σ2

ϕ, ρϕH, α0

)
. The

targeted moments are:

• distribution of job-level productivity. The model predicts that, conditional on Yj,
job-level productivity is determined by the average of worker-level productivity.
Therefore, the moments of the job-level productivity distribution help to identify µϕ

and σ2
ϕ.

• distribution of output size, Yj. As shown in equations (6) and (9), both the time
required to complete one task and the job-level productivity are increasing in Yj.
Therefore, the observed distribution of Yj puts restriction on the model’s parame-
ters.61

60Later, when discussing the target moments, we explain how we minimize the impact of job failures.
61One complication is that time constraints create the possibility that the assigned workers cannot com-
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• distributions of the fraction of the team’s hours contributed by its workers (by rank),
cumulatively, up to the rank-5 worker.62 Fractions of hours that are contributed
(by rank) are informative about the correlation parameter ρϕH. To see this, observe
that given the other parameters, if ρϕH > 0, more productive workers tend to have
greater time endowments. Therefore, hours will be more concentrated compared
to the case when ρϕH < 0. The fraction of hours contributed (by rank) is targeted
instead of team size because a complete profile of that fraction is sufficient to calcu-
late team size. For example, the fractions in a two-person team could be split in an
infinite number of ways.

More specifically, we solve the following optimization problem numerically:

min
α0,µϕ,σ2

ϕ,ρϕH

1
3
(ErrA + ErrY + Errl) ,

where ErrA is the error, or the distance between the empirical and simulated moments,
for moments related to team productivity, ErrY is the error for moments related to output
size, and Errl is the error for moments related to hour fractions. Each of the three error
terms is calculated as the mean squared errors between a group of empirical and simu-
lated moments. To calculate ErrA, we include the following moments of the logarithmic
value of team productivity distribution: the mean of the distribution, the 10th, 25th, 50th,
75th, and 90th percentiles, the ratio between the 90th percentile and the 10th percentile,
and the ratio between the 75th percentile and the 25th percentile. To calculate ErrY, we
include the 10th, 25th, 50th, 75th, and 90th percentiles of the output size distribution. And
to calculate Errl, we include the 25th, 50th, 75th, and 90th percentiles of the distribution of
rank-k cumulative fraction of hours contributed, for k equal to 1, 2, 3, 4, and 5.63

C Algorithm to find the nearest feasible allocation

We use the following algorithm to identify the nearest feasible labor allocation in the
counterfactual job:

1. For the set of workers who are common to both the actual and counterfactual jobs,

plete the job. The simulation drops such failed jobs from the sample. As a result, the simulated distribution
of Yj can differ from the empirical distribution of Yj. Including the empirical distribution of Yj in the target
moments minimizes this effect.

62The top five workers account for most of the team’s hours (about 88.3%, on average).
63The Basin-hopping algorithm (Wales and Doye (1997)) is applied to avoid having the optimization

routine trapped at a local minimum.
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namely for i = 1, 2, 3, ..., min
(
nj, njp

)
, set Mij = Mijp. If the actual team is larger than

the counterfactual team (i.e., if nj > njp) some measure of tasks remains unallocated
in the counterfactual job. To minimize the sum of squared errors, evenly allocate the
remaining measure of tasks to each worker in the counterfactual team even if doing
so would violate time endowment constraints. If the actual team is smaller than the
counterfactual team (i.e., if nj < njp) there will be at least one worker who is initially
allocated zero tasks in the counterfactual job.

2. Check the time constraints for all workers. If the time constraints are all satisfied,
stop.

3. If the time constraints are violated for some workers, set the measure of tasks such
that time constraints are exactly satisfied for those workers.

4. From step 3, due to the violation of time constraints, a measure of tasks remain to be
allocated. To minimize the sum of squared errors, evenly allocate these tasks across
the other workers whose time constraints are not violated.

5. Check the time constraints for all workers. If the time constraints are all satisfied,
stop. If not, repeat from step 3.

Note that the optimal hours for each worker and task, hijs, depend on the allocation of
tasks across the other team members, through the effect of the denominator in Rij, or

exp
(

∑i
Mij
S ln c−1

ij

)
. As a result, some workers might have their time constraint satis-

fied in step 3 and then later violated in step 4 upon allocation of the remaining measure
of tasks. However, this effect will be smaller as iterations evolve because the resulting
allocation will be closer and closer to a feasible allocation. The existence of a feasible
allocation is guaranteed because we drop observations in which the team is unable to
complete the job even by exhausting all team members’ time endowments (i.e., job fail-
ure). In the parameter calibration described in Appendix B, we add constraints so that
the risk of job failure is not substantial, and in fact it occurs for less than 1% of all jobs
in this counterfactual exercise. We allow time constraints to be satisfied with an error of
10−5, and convergence is always achieved within 50 iterations.
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